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Abstract

A granular bed was designed to collect nanoparticles as an alternative to nylon mesh screens for 

use in a nanoparticle respiratory deposition (NRD) sampler. The granular bed consisted of five 

layers in series: a coarse mesh, a large-bead layer, a small-bead layer, a second large-bead layer, 

and a second coarse mesh. The bed was designed to primarily collect particles in the small-bead 

layer, with the coarse mesh and large-bead layers designed to hold the collection layer in position. 

The collection efficiency of the granular bed was measured for varying depths of the small-bead 

layer and for test particles with different shape (cuboid, salt particles; and fractal, and stainless 

steel and welding particles). Experimental measurements of collection efficiency were compared 

to estimates of efficiency from theory and to the nanoparticulate matter (NPM) criterion, which 

was established to reflect the total deposition in the human respiratory system for particles smaller 

than 300 nm. The shape of the collection efficiency curve for the granular bed was similar to the 

NPM criterion in these experiments. The collection efficiency increased with increasing depth of 

the small-bead layer: the particle size associated with 50% collection efficiency, d50, for salt 

particles was 25 nm for a depth of 2.2 mm, 35 nm for 3.2 mm, and 45 nm for 4.3 mm. The best-fit 

to the NPM criterion was found for the bed with a small-bead layer of 3.2 mm. Compared to cubic 

salt particles, the collection efficiency was higher for fractal-shaped particles larger than 50 nm, 

presumably due to increased interception. Copyright 2015 American Association for Aerosol 

Research

1. INTRODUCTION

Nanoparticles (particles smaller than 100 nm) are in widespread commercial use in products, 

from metal oxides (ZnO and TiO2) in cosmetics and paints to carbon nanotubes (CNTs) in 

airplane parts. The toxicity of nanoparticles can be substantially greater than that of larger 

particles of the same composition (Oberdörster et al. 1992; Karlsson et al. 2009). Workers 

are handling these nanoparticles in substantial quantities during the manufacture of hundreds 

of commercial products (Hansen et al. 2008). However, no standardized methods are 

available to assess or quantify their presence in the workplace. The National Institute of 

Occupational Health and Safety (NIOSH) recommends mapping of the workplace with 
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direct-reading nanoparticle monitors followed by identification of particle size and chemical 

species with transmission electron microscopy (TEM) (NIOSH 2009, 2011). Mapping 

provides only a brief snapshot of the workplace and may not accurately reflect personal 

exposures because nanoparticles tend to rapidly decrease in concentration away from a 

source. In more specific guidance, NIOSH recommend that personal exposures to 

nanoparticle titanium dioxide (TiO2) be quantified from two simultaneously collected 

respirable samples using a combination of gravimetric, spectroscopic, and microscopic 

methods (NIOSH method 0600 1998; NIOSH method 7300 2003). In addition, analysis of 

particles by microscopy is neither standardized (therefore subject to great uncertainty) nor 

automated (therefore costly, at approximately $300 per sample). The lack of cost-efficient 

and standard sampling methodologies specific to nanoparticles hinders development of 

practical and effective personal exposure assessment strategies. Consequently, the extent to 

which workers are exposed to nanoparticles is unknown and the effectiveness of control 

measures is difficult to evaluate.

Size-selective samplers are generally used to measure workplace particle exposures in order 

to infer the biologically relevant particle concentration. For example, inhalable samplers are 

designed to collect particles that enter into and are available to deposit anywhere in the 

respiratory system, while respirable samplers collect only smaller particles that are capable 

of entering into the pulmonary region of the lung (Vincent 1999). Respirable samplers are 

designed to match the respirable particle sampling criterion, which must eliminate particles 

larger than 10 μm from entering the sample, collect 4 μm particles with 50% efficiency, and 

collect particles of 1 μm with 100% efficiency (ACGIH 2014). By this definition, respirable 

samplers prevent the collection of larger particles (>10 μm) that may exist in the 

environment, while selectively sampling only those smaller particles at the specified 

collection efficiencies.

The respirable sampler has limited usefulness in quantifying nanoparticle exposures since 

the mass measured from a sample collected using the respirable sampler can be dominated 

by particles larger than 100 μm, which are outside the range of nanoparticles. Area samplers 

are available to quantify nanoparticle concentrations by excluding larger particles from 

analysis, including low-pressure impactors (LPIs) (Hering et al. 1978) or microorifice 

impactors (e.g., the nano Micro-Orifice Uniform Deposition Impactor, nano-MOUDI, MSP, 

USA). A differential mobility analyzer (DMA) (Knutdon and Whitby 1975) can also be used 

to classify nanomaterials, with the collection of classified particles on a filter for subsequent 

analysis. However, these devices are bulky and expensive, making them impractical for 

wide adoption in the field and limited to area (room) sampling rather than personal, 

breathing-zone sampling.

Recently, researchers have developed personal samplers to collect nanoparticles. A personal 

nanoparticle sampler (PENS), which enables the collection of both respirable particles and 

nanoparticles simultaneously, was developed by Tsai et al. (2012). The PENS consists of a 

respirable cyclone followed by a microorifice impactor with the 50% cutoff diameter (d50) 

of 100 nm and a filter. The PENS is designed that 100% of particles ranging from 100 nm to 

4 μm are collected on the impaction plate while particles smaller than 100 nm are collected 

by the final filter. The PENS is 107 mm (length) × 44 mm (width) × 44 mm (depth) and 
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weighs 240 g. A sampling pump (600 g) is required to take nanoparticles at the airflow rate 

of 2 L/min.

A lightweight (60 g) nanoparticle respiratory deposition (NRD) sampler was recently 

developed by Cena et al. (2011). In this work, Cena et al. (2011) established a 

nanoparticulate matter (NPM) criterion to serve as a rational target for nanoparticle sampler 

development. The criterion links sampler performance to the fractional deposition of 

particles smaller than 300 nm in all regions of the human respiratory tract and thus opens the 

possibility for the development of diffusion-based samplers. The NRD sampler (ZNRD001, 

Zefon, USA) operates at the airflow rate of 2.5 L/min and incorporates an impactor (d50 of 

300 nm) and a diffusion stage containing eight nylon meshes (d50 of approximately 40 nm). 

The NRD sampler is used with the respirable cyclone similar to PENS. However, in 

subsequent studies of the NRD sampler, the mesh substrates were found to contain titanium, 

presumably a whitener for the nylon. The presence of titanium has prompted the search for 

diffusion substrates alternative to nylon mesh, particularly to use the NRD sampler as an 

alternative for the NIOSH exposure assessment protocol.

A granular bed might be a suitable substitute for the diffusion substrate. Under ordinary 

conditions, particles are captured onto granular materials mainly by mechanical collection 

mechanisms, such as inertial impaction, Brownian diffusion, gravitational settling, and 

interception (Tien and Ramarao 2007). Granular materials offer chemical and thermal 

resistance important in the treatment of hot and corrosive gases where filters cannot be used 

(Gal et al. 1985). Moreover, these beds can be made of low-cost granular material, such as 

glass beads. Gebhart et al. (1973) used a glass bead granular bed to collect aerosol particles 

with diameters ranging from 0.1 to 2 μm. D’Ottavio and Goren (1983) used glass beads, 

alumina beads, and pea gravel to collect aerosol particles with size range of 0.6–4.5 μm. 

Gebhart and Heyder (1985) used a granular bed composed of glass beads to simulate particle 

deposition in the human respiratory tract. Saini et al. (2002) developed a physical lung 

model using glass beads to study the lung deposition of charged aerosol particles.

The objective of this work was to develop a granular bed using glass beads as an alternative 

to nylon mesh screens for use in the NRD sampler. Experimental collection efficiencies 

were measured over a range of bed depths of the glass beads to assess which provided the 

best fit to NPM criterion for salt aerosol. The collection efficiency was then measured for 

highly fractal stainless steel and simulated welding particles. A theoretical model was also 

used to estimate the collection efficiency of the granular bed. The collection efficiencies 

measured experimentally were compared to those estimated from theory and to NPM 

criterion.

2. METHODS

2.1. Granular Bed Collection Substrate

A granular bed substrate was designed to connect downstream of the impactor in the NRD 

sampler (25 mm inside diameter) and provide collection of particles similar to the NPM 

criterion at an airflow of 2.5 L/min. The new substrate consisted of five layers (Figure 1): a 

coarse mesh (US20 mesh; 85385T73, McMaster-Carr, USA), a large-bead (1 mm; Z273619, 
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Sigma-Aldrich, USA) layer, a small-bead (200 μm; G9018, Sigma-Aldrich, USA) layer, a 

second large-bead (1 mm) layer, and a second coarse mesh. Specifications of mesh screens 

and glass beads are provided in Table 1. The large-bead layers and coarse mesh were 

designed to hold in place the small-bead layer, which served as the site of most particle 

collection. Meshes and glass beads were packed in a cylindrical polytetrafluoroethylene 

(PTFE) chamber. The inside diameter of PTFE chamber was fixed at 20 mm. The granular 

bed was lightweight (200 g) and able to fit into a universal lapel mount for personal 

samplers (ZA0061, Zefon, USA).

The PTFE chamber was loaded with beads after measuring weights of large and small beads. 

The weight of small beads was increased from 1 g to 2 g to optimize the small-bead depth to 

attain a collection efficiency similar to the NPM criterion. The weights of each layer and the 

resulting bed depths are reported in Table 1. The depth of both large-bead layers was fixed 

at 2.6 mm, but the depth of the small-bead layer was varied to 2.2, 3.2, and 4.3 mm. 

Electrical charge on the beads and walls of the chamber was neutralized by passing clean air 

at the flow rate of 2.5 L/min over two polonium-210 strips (2U500, Staticmaster, USA) and 

then through the granular bed for 30 min. The total pressure drop through the granular bed 

ranged from 290 to 480 Pa.

2.2. Experiment

The experimental setup, shown schematically in Figure 2, was used to measure the particle 

collection characteristics of the granular bed substrate. Dry and particle-free air, controlled 

by a mass flow controller (MFC; MPC20, Porter Instrument, USA), was delivered to the test 

particle generation system. Two particle generation methods were used in independent tests 

to generate test particles of substantially different shape: cubical salt and fractal metal 

agglomerates.

Cubical shaped particles were produced by nebulizing (Aeroneb Solo System, Aerogen, 

Ireland) a 0.9% NaCl solution by weight (NDC 0338-0049-04, Baxter, USA) to produce 

salt-water droplets, which were then dried by passing them through a diffusion dryer. The 

nebulizer was turned on and off (30 Hz frequency and 100% duty cycle) to control the initial 

concentration of salt particles before coagulation. The dry salt particles were passed through 

a Kr-85 charge neutralizer (3054, TSI, USA) to neutralize their charge to Boltzmann 

equilibrium.

Fractal agglomerates composed of stainless steel and simulated welding particles were 

produced by spark discharge following Park et al. (2014). A spark discharge was formed in 

an air environment between two identical metal electrodes: stainless steel rod (303 alloy; 

2EXC7, Grainger, USA) to generate stainless steel particles; and welding rods (H544051-

RDP, Hobart, USA) to produce simulated welding particles. The electrical circuit included a 

resistance of 0.5 M (two 1 M resistors arranged in parallel; GS10LC105G, KOA Speer 

Electronics, USA), a capacitance of 1 nF (DHRB34A102M2BB, Murata Electronics North 

America, USA), a loading current of 3 mA, and an applied voltage of 6 kV (Power supply; 

10C24-P125, UltraVolt, USA). Metal agglomerate particles were passed through a 

polonium-210 aerosol neutralizer (2U500, Staticmaster, USA) to neutralize their charge to a 

Boltzmann equilibrium.
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The neutralized test particles were delivered to a coagulation chamber (200 L) to increase 

their size. Polydispersed particles were produced and their median sizes were maintained 

near 100 nm by controlling initial concentration. Total number concentration of test particles 

were controlled and maintained at least 5×105 particles/cm3. After passing through the 

coagulation chamber, test particles were sampled onto a TEM grid (Cu-400-mesh, Ultrathin 

Carbon Type-A, Ted Pella, USA) placed on the polyvinyl chloride (PVC) membrane filter 

(225-5-37, SKC, USA). Sampled particles were analyzed by TEM (JEM-1230, JEOL, 

Japan) to evaluate their morphology.

Particle number concentrations, by electrical mobility size (dm) from 20 nm to 500 nm (64 

channels per decade, Total 90 discrete dms), were measured up- and downstream of the 

granular bed using a scanning mobility particle sizer (SMPS; 3936, TSI, USA), consisting of 

a classifier controller (3080, TSI, USA), an aerosol neutralizer (3077, TSI, USA), a DMA 

(3081, TSI, USA), and a condensation particle counter (CPC; 3776, TSI, USA). The 

fractional particle collection efficiency, ηc(dm), was defined using the following equation:

[1]

where Cdown(dm) and Cup(dm) are the number concentrations of down- and upstream of the 

granular bed, respectively. The measurement occurred in the following sequence: Cup1-

Cdown1- Cup2-Cdown2-Cup3-Cdown3-Cup4. For Equation (1), values of (Cup1 + Cup2)/2, (Cup2 

+ Cup3)/2 and (Cup3 + Cup4)/2 were used and then average of three ηcs was calculated. All 

the tests for the collection efficiencies were performed in the same method. To evaluate the 

size distribution of test particles, average values of four Cups were used.

Because the granular bed substrate was designed to operate downstream of NRD impactor 

(d50 of 300 nm), the experimental collection efficiency of the granular bed was adjusted to 

account for the penetration through the impactor. From the experimental results of Cena et 

al. (2011), empirical equations for penetration through the NRD impactor were determined 

as (see details in the online supplementary information):

[2]

[3]

where da is the aerodynamic diameter. The da in the Equations (2) and (3) was converted to 

the dm on the basis of the equations below:

[4]
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[5]

where CC is the Cunningham slip correction factor, χ is the dynamic shape factor (χ was 

assumed to be 1.08 for salt particles and 1.4 for stainless steel and welding particles [Hinds 

1999]), ρ0 is the unit density ( = 1000 kg/m3), and ρp is the particle density. The ρp was 

assumed to be 2200 kg/m3 for salt particles and 3400 kg/m3 for stainless steel and welding 

particles (Hewett 1995).

Using Equations (1)–(5), the overall collection efficiency of the substrate adjusted for the 

presence of the impactor was defined as:

[6]

2.3. Theory

Collection efficiency through a granular bed of spheres was estimated from theoretical 

considerations of particle diffusion and interception. The effects of inertial impaction and 

gravitational settling were neglected because particles of interest were smaller than 300 nm. 

Deposition due to electrostatic forces was ignored because charges of test particles and glass 

beads were neutralized prior to conducting experiments. The collection efficiency for the 

different layers of the granular bed substrate was calculated as:

[7]

where dv is the equivalent volume diameter of particle, Pm(dv) is the penetration of stainless 

steel mesh, and Pg,L(dv) and Pg,S(dv) are the penetration of large and small beads layers, 

respectively. Pm(dv) was calculated as (Cheng and Yeh 1980):

[8]

where αm, lm, and dmesh are the solidity, thickness, and wire diameter of stainless steel 

mesh, respectively. Pem is the Peclet number of mesh (= dmesh×U/D(dv)). U is the 

superficial velocity, and D(dv) is the diffusion coefficient of test particles (Hinds 1999). The 

constant B, which is the function of geometric arrangement for parallel staggered cylinder 

model, is given by (Cheng and Yeh 1980):

[9]

Penetration of each layer consisted of glass beads sized dg, was calculated as following 

equation (Lee 1981):
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[10]

where αg and lg are the solidity and depth of beads layer, respectively. dg is the diameter of 

bead. ED(dv) and ER(dv) are the collection efficiencies of a single sphere due to diffusion 

and interception, respectively. ED(dv) and ER(dv) were calculated as follows (Lee 1981):

[11]

[12]

where Peg is the Peclet number of glass beads ( = dg×u/D(dv)), and u is the flow velocity in 

the beads layer ( = U/(1–αg)). Kuwabara's hydrodynamic factor, K, is defined as:

[13]

The dv in Equations (7)–(12) was converted to the dm to compare estimated values from 

theory to experimental results.

2.4. Data Analysis

The overall collection efficiency of the substrate adjusted for the presence of the impactor 

was calculated from Equation (6). The ηadj from experiment and theory were compared to 

the NPM criterion, as presented in Cena et al. (2011). The R2 of ηadj and NPM curve was 

calculated as follows:

[14]

where ηadj,avg is the mean of the collection efficiency. The R2 of ηadj from experiment and 

theory was also calculated as follows:

[15]

3. RESULTS AND DISCUSSION

3.1. Size Distribution and Shape of Test Particles

The size distribution of the test particles obtained by SMPS is shown in Figure 3 with 

summary details provided in Table 2. Size distributions of test particles were log-normally 

distributed with a geometric standard deviation ranging from 1.8 to 1.9. The coefficients of 
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variation of the total number concentration were: 2.5% for salt, 0.8% for stainless steel 

particles, and 4.2% for welding particles, which indicates that concentrations of test particles 

were stable during the experiment. The geometric mean diameters of test particles were near 

100 nm. The coefficients of variation of the geometric mean diameter were: 1.5% for salt, 

0.8% for stainless steel particles, and 3.0% for welding particles.

Images showing the morphology and size of the generated test particles are shown in Figure 

4. Salt particles were confirmed to have cubic shape with rounded edges, whereas stainless 

steel and welding particles were clusters and chain-like agglomerates formed from 

coagulation of much smaller primary particles. The shape of stainless steel and welding 

particles were similar to one of particles generated by Park et al. (2014).

3.2. Collection Efficiency as a Function of Depth of the Small-Bead Layer

The experimentally measured and theoretical collection efficiencies of the granular bed 

adjusted for the presence of the impactor were compared to the NPM criterion. The χ was 

assumed 1.08 for salt particles. The adjusted collection efficiencies with three bed depths for 

salt particles are shown in Figure 5. As expected, collection efficiencies decreased with 

decreasing bed depth. The shapes of the collection efficiency curves were similar to the 

target NPM criterion. Collection efficiencies were lowest (<5%) for the largest (500-nm) 

particles and gradually increased with decreasing particle size. The d50 and R2 are in Table 

3.

For the NaCl particles, the adjusted experimental collection efficiency, ηadj, for a small-bead 

bed depth of 3.2 mm was slightly lower than the NPM curve, whereas the one with a depth 

of 4.3 mm was slightly higher than the NPM curve. The experimental d50 for the depth of 

3.2 mm was 35 nm, close to d50 = 40 nm from the NPM criterion. The small-bead depth of 

3.2 mm was selected for testing additional aerosol types because it had the lowest deviation 

from the NPM criterion as expressed by R2.

The same trends from experimental collection efficiency were observed in theoretical 

estimates, particularly for particles smaller than 100 nm (Figure 5). The shapes of theoretical 

collection efficiencies were similar to those of experimental results (R2 = 0.95–0.96). The 

theoretical ηadj for small-bead bed depth of 3.2 mm (solid line) was slightly lower than the 

NPM curve while the one with a depth of 4.3 mm (thicker solid line) was slightly higher 

than the NPM curve. The theoretical ηadj for the depth of 4.3 mm had the highest coefficient 

of determination (R2 = 0.99).

The theoretical d50 for the small-bead bed depth of 3.2 mm was same as one of the 

experimental results. However, the gap of experimental and theoretical ηadj was increased to 

maximum 0.09 for particles larger than 100 nm. This observation indicates that theory 

underestimated the collection efficiency for particles larger than 100 nm that could be 

affected by increased interception effects. The other possible reason is that captured particles 

formed porous structures between the glass beads and worked as secondary collection. 

These structures would enhance interception and result in the increased collection efficiency 

observed.
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3.3. Collection Efficiency for Particles of Different Shape

The adjusted collection efficiencies of granular bed with small-bead depth of 3.2 mm for 

salt, stainless, and welding particles are shown in Figure 6. NPM curves with constant 

values for χ of 1.08, 2, and 3 are also plotted. The shapes of the ηadj curves for salt, stainless 

steel, and welding particles were similar to the target NPM curve with χ of 1.08. The d50 for 

salt, stainless steel, and welding particles were similar to d50 = 40 nm of the NPM criterion 

with χ of 1.08. However, the ηadj for stainless steel and welding particles had larger 

deviations from NPM curve with χ of 1.08 than one for salt particles, particularly as the 

electric mobility particle size increased. Collection efficiencies of metal particles were 

similar to those of salt particles smaller than 50 nm, whereas they increasingly diverged for 

progressively larger particles. The ηadj for stainless steel and welding particles larger than 50 

nm were increased with increasing particle size. One reason could be that aggregated 

particles have a better chance of being collected than sphere particles due to increasing 

interception (Cheng et al. 1991; Kim et al. 2009). As shown in Figure 3, salt had cubic shape 

but stainless steel and welding particles had highly fractal shapes. From Figure 6, the χ of 

stainless steel and welding particles at 200 nm can be expected as 2 and 3, respectively. This 

finding is attributed to the fact that metal fume particles transition from near-spherical for 

primary particles (χ = 1 for dm < 5 nm), to compact aggregates (χ 1 for 5 nm < dm < 50 nm), 

and to highly fractal (χ > 1 for dm > 50 nm) as pointed out by Rogak et al. (1993) and Kim et 

al. (2009). At this time, sufficient information is not available from microscopic imaging to 

compute the varying shape factor by size but will be the subject of future work.

The deposition amount of fractal particles in human respiratory tract is higher than one of 

their equivalent volume spheres (Broday and Rosenzweig 2011). For spherical particles 

smaller than 50 nm, diffusion is the predominant mechanism for deposition in all the 

airways. However, particle aggregation increases interception and inertial impaction which 

results in increasing deposition in the upper airways (Asgharian and Yu 1990). 

Consequently, total deposition of aggregated particles increases with an increasing size and 

morphological complexity. The NPM criterion was designed for spherical particles and may 

not reflect the deposition of particles with fractal structure, such as diesel soot, or high 

aspect ratio, such as carbon nanotubes. Thus, the NPM criterion needs to consider particle 

shape. The shape factor can be used to modify the NPM curves for particles with various 

shapes.

3.4. Limitations and Next Steps

The granular bed in this part of the study consisted of five layers. The proportion of particle 

deposition on the mesh and larger supporting bead layer surfaces compared to that of the 

small-bead layer was not specifically examined in this study: it is still unclear whether 

particles deposited only on the bed of the 0.2 mm glass beads. However, the coarse mesh 

and larger glass beads could possibly be eliminated in future granular beds if the small-bead 

layer could be fixed by some way, such as by sintering the glass beads.

At present, there is no standard method to extract the particles collected onto glass beads for 

analysis using standard analytical methods, such as inductively coupled plasma (ICP); 
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method development, particularly sample recovery, is still needed. Future research will 

focus on development of a method for chemical analysis.

Overall, this study indicates that granular beds show promise as a particle collection 

substrate for nanoparticle samplers. Nearly round particles were collected by the granular 

bed at efficiencies similar to the NPM criterion. The depth of the beads layer, size, and 

material of beads can be modified using theory to match desired collection efficiencies as 

the NPM criterion specifications change to accommodate new understanding of respiratory 

deposition of nanomaterials of various shapes.

4. CONCLUSION

This study was the first to report a size-selective sampling method using a granular bed 

sampler. The granular bed was designed and investigated as a nanoparticle collection 

substrate alternative to nylon mesh screens for use in the NRD sampler. The collection 

performance of a granular bed using glass beads was examined over three small-bead bed 

depths and three test particles (salt, stainless steel, and welding particles). The collection 

efficiency for salt particles was matched well to the NPM curve that is the same as 

collection efficiency of the NRD sampler, but collection efficiencies for stainless steel and 

welding particles increased over salt particle collection efficiencies, where particle shape 

factor may be more influential in particle deposition within the granular bed.
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FIG. 1. 
Granular bed sampler.
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FIG. 2. 
Experimental setup.
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FIG. 3. 
Size distributions of test particles. Error bars represent the standard deviation of four 

measurements.
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FIG. 4. 
TEM images of salt (a), stainless steel (b), and welding particles (c).
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FIG. 5. 
Adjusted collection efficiency of salt particles for the granular bed sampler for varying 

depths of the small-bead layer. Error bars represent the standard deviation of three 

measurements.
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FIG. 6. 
Adjusted collection efficiency of different test particles for the granular bed sampler with a 

small-bead layer of 3.2 mm. Error bars represent the standard deviations of three 

measurements.
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TABLE 2

Characteristics of test particles (values in parentheses represent the standard deviation of four measurements)

Test particles Geometric mean diameter, nm Geometric standard deviation Total number concentration, particles/cm3 Shape

Salt 114 (±2) 1.9 (±0) 5.4 × 105 (±1.4 × 104) Cube

Stainless steel 83 (±1) 1.8 (±0) 2.3 × 106 (±1.8 × 104) Fractal

Welding 94 (±3) 1.8 (±0) 2.5 × 106 (±1.1 × 105) Fractal
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